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Abstract

We consider optimizations that are required for efficient execution of code

segments that consists of loops over distributed data structures. The PAI_TI

execution time primitives are designed to carry out these optimizations and

can be used to implement a wide range of scientific algorithms on distributed

memory machines.

These primitives allow the user to control array mappings in a way that

gives an appearance of shared memory. Computations can be based on a global

index set. Primitives are used to carry out gather and scatter operations on

distributed arrays. Communications patterns are derived at runtime, and the

appropriate send and receive messages are automatically generated.

*This work is supported under NASA contract NAS1-18605, and by the U.S. Office of Naval
Research under Grant N00014-86-K-0310
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1 Introduction

Efficient implementation of scientific codes on distributed memory architectures re-

quires special techniques both at run-time and at compile-time. The PARTI (Parallel

Automated Runtime Toolkit at ICASE) system is a set of primitives that can be used

to implement a wide range of scientific algorithms on distributed memory machines.

These primitives support various run-time operations required by programs that

make use of an embedded shared name space on a distributed machine. The user

can carry out gather and scatter operations on distributed arrays using a global in-

dex set. Communications patterns are derived at runtime, and the appropriate send

and receive messages are automatically generated.

The PARTI primitives are initialized by specifying a mapping into distributed

memory for each globally defined multidimensional array. The primitives include

procedures that allow one to scatter and gather array elements in the distributed

memory. The PARTI tools are organized into two levels. The lower level supports

memory operations such as scatters and gathers across processors. The higher level

binds mapping information to distributed arrays and uses this information to call the

lower level primitives. The primitives allow the storage of information about memory

access patterns so that memory operations With the same address calculations need

not repeat these calculations. Send/receive schedules are generated for memory

operations. The schedules may be stored and reused as well. This is particularly

important for the implementation of iterative algorithms.

The ideas incorporated in PARTI are specifically aimed at computations on dis-

tributed memory machines in which the structure of the computation depends on

the input data. Run-time support must be incorporated as part of the distributed

implementation of such computations. Directly incorporating the primitives into

applications programs allow investigation of the usefulness and relevance of various

optimizations. In this paper we demonstrate and benchmark these primitives using

two different programs. The first is an adaptive method for solving partial differential

equations, the second is a kernel from an unstructured mesh code.

1.1 Related Research

Williams [16] describes a programming environment for calculations with unstruc-

tured triangular meshes using distributed memory machines. In [16], collections

of distributed array accesses are translated into an efficient set of inter-node mes-

sages. Similar mechanisms for translating an irregular pattern of array accesses into

inter-node messages have been proposed in order to make it possible to efficiently

distribute loops where some array references are made through a level of indirection.

Work on this topic was presented by the present authors in [12],[8], [9] as well as by

Mehrotra and Van Rosendale [7, 6].

In this paper, we present primitives that can be used directly by programmers

that allow users to carry out gather and scatter operations over global index sets on

distributed arrays.

Callahan and Kennedy [3], Rogers and Pingali [10], and Rosing and Schnabel [11]

suggest execution time resolution of communications on distributed machir_'._ None



of these utilize information on repeated patterns of communications. The Linda

system[I] provides an associative addressing scheme by which a reference to variables

can be resolved at execution time. This in essence provides a shared name space for

distributed memory machines; however, the shared name space does not allow users

to determine how data is to be partitioned between processors. The costs associated

with this lack of data locality can be extremely high in some cases [12].

2 PARTI Primitives

The PARTI primitives currently consist of two levels. The most fundamental of

the primitives are the Level 0 Primitives. They consist of routines to gather and/or

scatter (read and write) values to elements of one dimensional arrays alocJ defined on

each processor j. Each aloc j is local to processor j; it is not viewed as a distributed

array by the Level 0 Primitives.

2.1 Level 0 Gather and Scatter

Level 0 gathers and scatters are accomplished by using three routines: Scheduler,

Gather Exchanger, and Scatter Exchanger.

Scheduler on processor P_ is passed a list of indices K s into each alocJ from which

data is to be fetched and produces a schedule S that is used by both exchangers.
On processor pi, Gather Exchanger inputs

1. a buffer into which the fetched elements are to be placed

2. the location of array aIoc _

3. the schedule S produced by Scheduler

Gather Exchanger executes sends and receives that fetch from each processor PJ the

appropriate elements from the array aloc j. Then it places these elements into the

user-supplied buffer.

Scatter Exchanger is passed

1. a buffer from which each scattered datum is to be obtained

2. the location of array aIoc _

3. the schedule S produced by Scheduler

Scatter Exchanger executes sends and receives that put on each processor PJ the

appropriate elements from the buffer. Then Scatter Exchanger places these elements

into the appropriate elements of array aloc i.
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2.1.1 Functioning of the Scheduler and Exchangers

Exchange procedures for both the scatterand the gather have three stages. They

permute data into buffersto bc sent. They carry out the needed communication,

then they perform another permutation.

The scheduler firstdetermines how many messages each processor must send

and receive during the data exchange phase. Defined on each processor pi is an

array nmsgs £. Each processor sets itsvalue of nmsgsi(j) to i ifitneeds data from

processor j or to 0 ifitdoes not. The scheduler then replacesnmsgs with the element-

by-element sum nmsgsi(j) _--Ek nrrtagsk(J)• This operation utilizesa function that

imposes a fan-in tree to find the sums. Since the resultingsum iskept in nmsgs i,

at the end of the fan-in on every processor, nmsgsi(j) isthe number of messages

that processor pi must send during the exchange phase. Next, each processor sends

a reques_ lis_to every other processor. The request listsent from processor PP to

processor Pq contains the indicesof data needed by processor PP that are stored on

processor Pq.

The number of non-empty request listseach processor willreceiveisequal to the

number of messages that the processorwillsend in the exchange phase. Each request

list is placed in an array indexed by the processor from which the list came. When

the scheduler is finished, each processor has an array of request lists obtained from

other processors. The j.,h element of this array contains the request list obtained from

processor ]. At this point in the execution, each processor pi knows which elements

of aloc i must be sent to other processors. This information is used to generate the

schedule S of pairs of send and receive statements. These send/receive pairs will

exchange the requested data for either a gather or a scatter. Thus, both the gather

and the scatter call the ezchanger routine. The exchanger is passed the schedule S

with the required buffer space. It then carries out the required communication.
.=

2.1.2 Additional Exchangers

in addition to the_LeveI 0 exchanger, we have found it useful to develop hybrids of

the gather and scatter that perform remote operations on distributed array data.

For example, the Scatter_add adds data eiementsDi, ..., Dnj to elements alocJ (kl) ,..,

alocJ(knj). Similar exchanges perform distributed subtractions, multiplications and
divisions.

2.2 Level 1 Primitives

The Level I Primitives arc the user interfacebetween an applicati0n code and the

Level 0 Primitives. Use of Level i Primitives allows the dynamic allocationof dis-

tributcd multi-dimensional arrays and supports data transferbetween these arrays.

The Level 1 Primitives consistof declarationprocedures and of communication pro-

cedures. The intermediate levelPARTI declaration procedures allow the user to

declare a dynamically allocateddistributedarray in a way that allows specification

ofhow the array isto bc partitionedbetween processors.Coupled to these distributed

array declarationsare the intermediate levelgather and scatter procedures. These

procedures are designed to allow users to fetch or store array elements from the
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distributed memory in a way that does not require the user to keep track of where

array elements are stored. This makes it relatively straightforward to write codes

that allow data structures to be repartitioned during program execution. All mem-

ory is allocated or declared in the programs that call PARTI procedures; memory

locations are passed to the procedures that perform array initializations. Users write

programs that contain a combination of

1. code written to execute on individual processors

2. communications calls that consist of gathers or scatters to distributed arrays

3. communication calls that consist of zero-level gathers or scatters

4. send and receive message passing calls

2.2.1 Level 1 Declaration Procedures

The declaration procedures in the PARTI primitives allow the user to describe how

a data array is mapped into the distributed memory of the machine. This is ac-

complished by specifying the mapping of the data to a virtual processor array, then

describing the relationship between the virtual processor array and the original pro-

cessor array.

Specified in an array initialization is a processor grid G of arbitrary dimension and

size. This processor grid is automatically gray coded in the current implementation.

Embedded in G is an array of virtual processors V. The embedding is specified by

the user. This two-stage specification of processor sets allows embedding different

distributed arrays into different subarrays V of G. Note also that different distributed

arrays can be initialized with different processor grids G or with the same G but with

different virtual processor subarrays V.

Data arrays are mapped onto virtual processor subarrays in any one of a num-

ber of ways. We support tensor product mappings in which each array dimension

is partitioned independently or is left undistributed. Following [7], we support

blocked partitionings where each processor receives an equal number of contiguous

array elements along a given dimension, and cyclic distributions in which dements

are distributed stripped fashion across the processors. We also support enumerated

distributions in which mappings are supported by distributed translation tables. The

number of dimensions of an array to be distributed must match the dimensionality
of G.

2.2.2 Level 1 Communication Procedures

The Level 1 Gather exchanger and Scatter exchanger routines allow communi-

cation of user data based on the global index set. The Level 1 Scatter Exchanger

inputs lists of distributed array indices and values. It places the values in the dis-

tributed memory locations specified by the indices (and the initially supplied array

mapping). The intermediate level Gather Exchanger inputs lists of distributed array

indices along with a pointer to a memory buffer in the calling processor. Data values

from the appropriate distributed memory locations are obtained and placed in the
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calling processor's buffer. An initialization or Scheduler procedure call is required

for Gather exchanger or Scatter exchanger. The initialization procedure precom-

putes the locations of the data that will to be sent and received by each processor.

This initialization is needed only once-it may be reused any number of times. The

initialization will be described first.

The initialization combines the mapping information provided by the declaration

routines with a specific list of global indices. The result is a set of communication

calls coupled with some pre- or post-movement of the data (for the gather and scatter,

respectively). The communication plus movement is executed when the gather or
scatter is called.

Each array A distributed with the Level 1 Primitives is treated by the Level 0

routines as a set of aloc arrays defined on each processor. Elements of A are gathered

by calculating corresponding indices of aloc arrays and then executing a Level 0

gather.

The index of a D-dimensional array is translated to a physical processor p and

an index i to aIoc. Index i is generated from the user-specified index by using

the mapping from the data to the virtual processor array. The physical processor

P is determined by locating the virtual processor in V, then using the embedding

information to obtain the position in G. The physical processor corresponding to the

calculated position in g can be obtained from the gray code. Notice that the phys-

ical memory locations of the various alocs are not used directly in the calculations.

Rather, the index i is passed to processor P. This has the advantage of allowing each

processor to store its data in different physical memory locations.

The steps involved in performing a gather on an index list L into A are outlined

here. Translations described above produce a list of indices Li and a list of processors

Lp that correspond to L. These lists are used to determine the scheduling of a low

level gather and are sorted by processor. The sort results in a permutation array

LpF_,RM that reorders the elements of L. Since moving and/or copying of data is

avoided, the efficiency of the gather is increased. A Level 1 gather is performed from

executing the scheduled zero-level gather and then using LpERM to reorder the values

obtained by each processor. In many scientific programs it is also useful to execute

isomorphic gathers on different arrays. Recall that actual memory addresses are only

bound to the intermediate and the zero-level primitives after all of the optimizations

are carried out. Consequently, the same zero-level gather schedule and the same

permutation array LPERM can be associated with a number of different distributed

arrays. Setup costs are amortized when the same pattern of communication is carried

out many times.

The Level i gather Exchanger and Scatter Exchanger procedures are designed

to allow users to fetch or store array elements from the distributed memory in a way

that does not require the user to keep track of where array elements are stored. It

is relatively straightforward to write codes that allow data structures to be reparti-

tioned during program execution. Declaration procedures can be called to repartition

the distributed data, and the application can be written in a partitioning-independent

manner.
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Figure 1: Two-mesh refinement.

3 The Use of PARTI Primitives in Adaptive and

Unstructured Applications

We present one complete code and one computational kernel to motivate the dis-

cussion of our execution time optimizations and the PARTI (Parallel Automated

Runtime Toolkit at ICASE) primitives.

3.1 Adaptive Mesh Partial Differential Equation Solver

The first example is a technique for adaptive refinement. The method will be de-
scribed in the context of the solution to

u, + f(u)_: + g(u)v - eAu = 0

in the presence of a shock where the profile (detailed shape) of the shock is desired.

For the method discussed here, resolution of the profile implies that a highly refined

grid must be used in a neighborhood of the shock. The theory behind the algorithm

has been described [4] so only an algorithmic description of the method will be

presented here. In this algorithm, the structure of the computations changes with

time and a non-uniform communication pattern arises due to the sharing of data

between grids.

The method initially computes th e solution on a coarse mesh. An error estimator

is then applied to determine the regions that will be covered by a refined mesh. An

example mesh from this two-level refinement is shown in Figure 3.1.

The solution is time-dependent. Time-marching on the refined mesh is performed

by taking many (e.g. 100) time steps on the refined mesh for a single coarse-grid

time step. Let U represent the solution, k be the temporal step-counter, and (i,j)

represent the discrete location on a spatial grid. The subscripl,_ c and r are used

tor_fer t0 the coarse an d refined meshes, respectively. The d_ structure used
for the coarse mesh is a two-dimensional array. The solution on the refined mesh is

represented by a three-dimensional data structure in which the third index repr_'_ ..... ,._
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a block of the refined mesh (each block corresponds to a single coarse grid square),

and first two indices represent the spatial location within the block. The general

structure of the kernel is outlined in Algorithm 1. In general, a shock moves and

For kc = 1 to K

I. Sweep over the coarse mesh

A. Compute Uc.

B. Flag region that should be refined.

II. If flagged region is not empty.

A. Modify shape of refined region

B. Interpolate boundary values for Ur from U=.

C. Forkr=l toK_

1. Sweep over the refined mesh

2. Share values between blocks in U_

D. Inject values of refined region into coarse grid

ALeORXTH_ 1 Two-mesh algorithm.

changes shape. Thus, the refined mesh will be dynamic - its location, shape, and size

all change. This means that both the communication pattern within a distributed

mesh and the relationship of the two meshes will change during the execution of the

program.

Classes of inter-processor communication needed to implement Algorithm 1 in a

distributed computing environment are;

1. communication involved in coarse mesh sweeps (Step I.A.),

2. communication involved in fine mesh sweeps (Step II.C.1.),

3. sharing of values between the coarse and fine meshes(Steps II.B. and II.D.),

and

4. communication required to modify the shape of the refined region (Step II.A.).

In our implementation of Algorithm 1, the PARTI primitives are used in all but the

last set of communications.

3.2 Unstructured Mesh Kernel

Figure 2 depicts a schematic outline of a kernel from a fluid dynamics simulation. In

Section 4.2 we will present experimental results obtained from a similar but slightly

more complex kernel. The kernel is based on an algorithm which fills a computational

domain with irregular polygons. Heuristics designed to ensure that the governing par-

tial differential equation is solved with an approximately equal accuracy throughout

the computational domain determine the area and shape of the polygons. The data

structures used in solving the problem represent a bidirectional graph where vertices
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For i=1 to Number-Edges

I. vA = yold(node(i,1))
vB = yold(node(i,2))

II. Calculateflux using vA,vs.

This calculation alsousesedgedata(i,1),..,edgedata(i,SMALL)

III. y(node(i,1)) = y(node(i,1)) + flux
y(node(i,2)) = y(node(i,2))- flux

Figure 2: Outline of Computational Fluid DynamicsUnstructured Mesh Kernel

representpolygons and edgesrepresentadjacencyof the polygons. Sweepsover the
polygonsare accomplishedby traversingthe edgesof this graph. In thesecodeswe
solvefor equation valuesat graph vertices.

The kernel outlined in Figure 2 computesthe flux acrosseachgraph edge. The
indicesof the two verticesconnectedby the j th graph edgearedenotedby node(j , 1)
and node(j, 2) in Figure 2. The computationof the flux terms requiresyold (node(i, I) )
and yold(node(i,2)) (step I in Figure 2). The computation also requiresother in-
formation concerninggraph edgei (step II in Figure 2). In this example,weassume
that data pertaining to edgei is placed in row i of edgedata. In step III, flux is
added to y(node(±, 1)) and flux is subtracted from y(node(±, 2) )

It is necessaryto decide how the parallel loop iterations for index i are to be
partitioned betweenprocessors.We must also specifyhow the data in arraysy and
yold should be partitioned. No matter how we partition loop iterations and data,
the structure of the problem requiresthat weaccessoff-processorelementsof y and
yold. On the other hand, edgedata(i,j) and node(i,j) (j = 1,2) are used only

in the ith parallel loop iteration so these arrays can be partitioned so that only local
array accesses are needed.

in this kernel, the dependencies between elements of arrays y and yold are deter-

mined by integer array node. We therefore cannot accurately predict what data must

be prefetched until the program executes. On distributed machines, it is typically
very inefficient to fetch individual off-processor data as a need for these elements is

encountered because of high communications latencies. We will use the level 0 prim_

itives to allow us to preschedule the communications needed to efficiently prefetch
off-processor data.

3.3 The Preprocessing Phase

In Figure 3, we outline the preprocessing needed to distribute the computation

depicted in Figure 2. In this example, assume that y and yold are mapped in an

identical manner. We also assume that Local(x) and Processor(x) are functions that

return the processor and local index associated with the distributed array element
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I. For all edgesI asslgnedto processorP

if Processor(node(i,1)) _ P

concatenate Processor(node(i,1)) to ProcA

concatenate Local(node(i,1)) to LocalA

if Processor(node(i,2)) 5/ P

concatenate Processor(node(i,1)) to Procs

concatenate Local(node(i,1)) to LocaIB

II. Call Level 0 Scheduler with LocalA and ProcA (schedule SA)

Call Level 0 Scheduler with LocalB and Procs (schedule SB)

Figure 3: Preprocessing Unstructured CFD Kernel

x. In this example, we use only the level 0 primitives.

In the first step (step I in the figure) we sweep through the edges assigned to

processor P and generate lists of off-processor references into distributed arrays y and

yold. On processor P, the arrays ProcA and LocaIA are used to store the processor

and local array index that corresponds to each off-processor reference made by P to

y(node(i,1)) and yold(node(i,1)). Arrays ProcB and LocaIB are used to store

off-processor references made by P to y (node (i, 2) ) and yold (node (i, 2) ). In step

II. in Figure 3, the level 0 scheduler is called with the lists of processors and local

indices associated with the first vertex (ProcA and LocalA). The level 0 scheduler

is called again with the analogous lists associated with the second vertex. The two

level 0 scheduler calls produce schedules SA and SB respectively.

Once the schedules SA and SB have been obtained, we can begin the sweep

over the graph edges. The schedules obtained above can be reused as long as the

assignment of edges to processors is not altered and values assigned to the inte-

ger array node are not changed. In step I in Figure 4, copies of data from off-

processor elements of array yold are obtained and put into arrays read - bufferA

and read- bufferB. In step II in this figure, we loop over all edges assigned

to processor P. In step IIA, when yold(node(i,1)) is assigned to P, we can assign

yold(Local(node(i,1))) to v A. When yold(node(i,1))is stored off-processor, VA must

be obtained from the buffer read - buff erA. The analogous conditional assignment

is carried out for vB in step IIB. In step IIC the flux term is computed using VAand vs

and edgedata (i, 1),..., edgedata (i, SMALL). In step IID operations on elements

of y local to processor P are preformed. Operations on non-local elements of y are de-

ferred. For non-local elements of y assignments are made to buffers write - buff erA

and to write - buffers. Finally in step III, the calculated flux elements are added

and subtracted from the appropriate off-processor array elements through the use

of the scatter.add and scatter_subtract exchangers. Note that we can again use

schedules SA and Ss.
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I. Call Level 0 Gather Exchanger using (schedule SA),

place data in read -- bufferA

Call Level 0 Gather Exchanger using (schedule Ss),

place data in read -- buffers

II. For all edges i assigned to processor P

A. if Processor(node(i,1)) = P

v, = yold(Local(node(i,1))

otherwise

V A ----read --bufferA(Acount)

Acount = Acount + i

B. if Processor(node(i,2)) = P

vB = yold(Local(node(i,2))

otherwise

vs = read --buffers(Bcount)

Bcount = Bcount + i

C. Calculate flux using VA, vs.

This calculation also uses edgedata(i,1),.., edgedata(i,SMALL)

D. if Processor(node(i,1)) = P

y(Local(node(i'li) = y(Loca1(node(i,l)) + flux :

otherwise

write -- bufferA(Lcount) -- flux

if P rocessor(node(i,2)) = P

y(Local(node(i,2)) = y(Local(node(i,2)) + flux

otherwise

write -bufferS(Bc0unt) -- flux

III. scatter..add exchanger called using schedule SA and write --bufferA

scatter_subtractexchanger calledusing schedule SB and write - buffers

Figure 4: Unstructured Mesh CFD Kernel
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4 Experiments

The experiments described in this paper used either a 32 processor iPSC/860 machine

located at ICASE at NASA Langley research center or a 128 processor iPSC/860 ma-

chine located at Oak Ridge National Laboratories. Each processor had 8 megabytes

of memory. We used the Greenhill 1.8.5 Beta version C compiler and the Greenhill

1.8.5 Beta version 4.1 Fortran compiler to generate code for the 80860 processors.

4.1 Primitives Benchmark Timings

We first measure the time required to carry out level 0 and level 1 Scheduler, Gather

Exchanger and Scatter Exchanger procedure calls. We use the level 1 initialization

primitive to declare a 128 by 128 element distributed array of single precision num-

bers. We allocate four processors configured in a 2 by 2 grid G and allocate an array

block to each processor.

We use the level 1 primitives to repeatedly exchange information between two

processors in the grid. We first scatter and then gather lists of array elements. In

this experiment, we chose array elements in n by n sub-blocks between the upper left

hand corner and the lower left hand corner of G. In performing this experiment, we

measure the time required to carry out the following procedure calls:

1. Level 0 Scheduler

2. Level 0 Scatter

3. Level 0 Gather

4. Level 1 Scheduler

5. Level 1 Scatter

6. Level 1 Gather

7. iPSC/860 supplied send and receive pairs that exchange 4n 2 bytes of data

In Table 1 we depict the results of these experiments. We present the time (in

milliseconds) required to carry out the requisite data exchange using send and receive

messages. We then present the ratio between the time taken by PARTI primitive calls

and the time taken by the equivalent send and receive calls. Table 1 only presents

Gather Exchange and Scheduler calls. The Level 0 and Level 1 Scatter Exchange calls

were also timed, the results for each Scatter Exchange call were virtually identical

to that of the corresponding Gather Exchange call.

We first note that for relatively large amounts of data, a Level 0 Gather Exchange

takes a factor of 1.2 more time than the corresponding send/receive pair. A Level i

Gather Exchange takes a factor of 1.6 more time than the corresponding send/receive

pair. Again, for relatively large amounts of data, it costs about as much to schedule

a message using the Level 0 primitives as it takes to send the message using send

and receive messages. In contrast, the Level 1 Scheduler is an order of magnitude

more expensive than the corresponding send/receive pairs. This relatively high cost
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Table 1: Overheadsfor Level 0 and Level 1 Primitives
Number of

Data
Elements

100
40O
900
1600
2500
3600

Send

Receive

Time(ms)

0.5

1.0

1.8

2.9

4.3

6.0

Level 0

Gather

(ratio)
1.0

1.1

1.1

1.2

1.2

1.2

Level 1

Gather

(ratio)
1.2

1.3

1.5

1.6

1.6

1.6

Level 0

Scheduler

(ratio)

2.1

1.4

1.3

1.3

1.1

1.0

Level 1

Scheduler

ratio

7.0

9.2

10.7

11.2

11.1

11.2

is caused by the integer operations needed to identify each reference to a distributed

two dimensional array with a processor and local storage location.

4.2 Kernel from Unstructured Mesh Code

We used an unstructured mesh that was generated to carry out an aerodynamic

simulation involving a multielement airfoil in a landing configuration [5]. The un-

structured mesh consists of a highly non-uniform scattering of mesh points joined

together by line segments to form a set of triangular elements. The algorithm used is

the Delaunay Triangulation algorithm [13]. Details of this mesh generation process

can be found in [5]. The mesh used in this problem had 11143 vertices, and is shown

in Figure 5. The computational algorithm we study computes convective fluxes using

a method based on Roe's approximate l_iemann solver [14], [15].

The computational kernel used in this experiment is very closely related to the

kernel described in Figure 2. In place of each of the arrays y and yold found in

the kernel described in Section 3.2, we have four different arrays yp, yu, yv, yp and

yoldp, yoldu, yoldv, yoldv, respectively. These represent the density, pressure, and

velocity components of the solution. Each call to an exchanger in Figure 4 is conse-

quently replaced by four exchanger calls, since the data access patterns for each of

these four arrays are identical, we still need only call the scheduler twice, once with

ProcA and LocaIA and once with ProcB and LocaIB.

The original program was written in Fortran, we initially extracted the computa-

tional kernel and produced a sequential C version of the kernel. The multiprocessor

-codes developed were also written in C. Whenpartitloning this kernel, we made

only modest effgrts t9: reduce volume of needed communication and to balance load.

When we employ P processors, we partition the problem domain into P strips. All

the vertices Vs in the Sth strip are assigned to a single processor. The strips are

chosen to evenly partition the sum of the number of edges associated with each Vs.

In order toallow us to use the Level 0 primitives, we renumbered the mesh points so

that contiguously numbered mesh points are assigned to a processor. If both vertices

comprising an edge were assigned to a processor P, that edge was also assigned to P.

If the vertices vl and v2 comprising an edge were assigned to two different processors

P and Q respectively, we assigned the edge to processor O.

We measured the time required for an iPSC/860 multiprocessor to compute the
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Figure 5: Unstructured Mesh for Multielement Airfoil
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parallelized computational kernel as well as the time needed to carry out the prepro-

cessing and communications steps outline in Section 3.2.

In Table 2 we first report the computational rate in Mflops for the parallelized

code on 2 through 64 processors, along with a separate sequential version of the kernel

timed on a single iPSC/860 node. The computational speed ranged from 3.2 Mflops

for a single node to 87.3 Mflops on 64 nodes. We next depict the total time required

to generate lists of off-processor references and to carry out the Level 0 scheduler calls

(Steps I and II, Figure 3). The cost of finding the processor number and the local

index number associated with the vertices in each edge took a substantial portion of

this preprocessing time. For two processors the total preprocessing was 198 millisec-

onds. Of this total preprocessing time, 181 milliseconds was required for translating

vertices to processors and local indices, and only 17 milliseconds was needed both to

form lists of off-processor references and to call Level 0 schedulers (refer to Table 2).

When 64 processors were used, total preprocessingrequired 23 milliseconds, of which

16 milliseconds was required for forming the lists of off-processor references and for

calling the Level 0 schedulers.

As we mentioned in Section 3.2, the preprocessing only needs to be carried out

once and can be amortized over many unstructured mesh flux calculations. The time

required to carry out the fluX calculations (Figure 4)' is given as total kernel time

in Table 2. Note that total kernel time does not include the preprocessing cost. The

time required for preprocessing ranges from 21% of the time needed to compute
the computational kernel when 2 processors were used to 35 % of the cost when

we used 64 processors. Finally, we report the amount of time taken by the Level

0 exchangers (Steps I and III in Figure 4. Communication costs ranged from 2%

to 61% of the total cost needed for tRe kernel compuiation for 2 and 64 processors
respectively. The time needed for communication inthe kernel increases with the

number of processors, the communication time reaches a plateau of approximately

40 milliseconds for 32 and 64 processors. This communication tlmecould probably

be significantly reduced were we to partition the domain in a way that required a

smaller V01un_e of communication. While the Level i primitives embed data arrays

into processor arrays using a gray code, the Level 0 primitives do not provide support

for such an embedding. The increase in communication time from 2 to 32 processors

is largely due to the non-local communication pattern [2]; we would expect that

gray coding would improve performance.

We can define parallel efficiency for a given number of processors P as the sequen-

tial time divided by the product of the execution time on P processors times P. In

Table 3 we depict under the heading of single sweep efficiency, the parallel efficien-

cies we would obtain were we required to preprocess the kernel each time we carried

out calculations. In reality, preprocessing time can be amortized over multiple mesh

sweeps. If we neglect the time required to preprocess the problem in computing

parallel efficiencies, we obtain the second set of parallel efficiency measurements pre-

sented in Table 3. The amortized parallel efficiencies we obtain range from 99.7 for

2 processors to 44.4 for 64 processors.

The processor architecture of the Intel-2/860 includes a 8K byte data cache.

We can anticipate that for a fixed sized problem, the rate of computation on each

node will tend to increase with concurrency. We quantified the performance effects
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Table 2: Timings for Roe's Approximate Riemann Solver of Unstructured Mesh (in
TIicrosecs)
Number of Mflops Total Form off-processor Total Kernel Communication
Processors Preprocessing Lists, Schedule Time

Time(ms) Time (ms) Time(ms)
1

2

4

8

16

32

64

3.1

6.1

11.8

22.0

38.9

63.1

87.3

198

105

56

32

25

23

17

13

9

8

12

16

1845

925

482

258

146

90

65

in Kernel

Time(ms)

17

27

31

36

41

40

Table 3: Parallel Efciencies for Roe's Approximate Riemann Solver of Unstructured

Mesh
Number of

Processors

1

2

4

8

16

32

64

Single Sweep Amortized Single Processor

Efficiency Efficiency Speed (Mftops)

100.0

99.7

95.6

89.3

80.0

64.1

44.4

100.0

82.1

78.6

73.4

64.8

50.1

32.8

3.08

3.17

3.17

3.18

3.20

3.23

3.24

of the data cache by employing the sequential program to sweep over the edges

that we assigned to processor 0 when we partitioned the problem between various

numbers of processors. In Table 3, we depict the results we obtained. The rate of

computation was 3.08 Mflops when we calculated the flux for the entire problem. The

computational rate increased monotonically as the size of the sub-problem assigned

to processor 0 decreased, reaching 3.24 Mflops in the 64 processor case.

4.3 Computational Results for Domain Decomposition Al-

gorithm ............

We present computational results for the parallelized domain decomposition algo-

rithm. This domain decomposition algorithm decides when to refine the coarse mesh

using an error estimator based on the first and second derivativesof the solution [4].

This program was written in Fortran.

Table 4 depicts the total computation time in seconds required to run the ex-

ample problem with the tolerance (TOL) for the second derivative set to 21. The

computations were carried out for a total of 440 coar s-elgr{d"=t_me steps. Due to

memory constraints, we we unable to run this problem on fewer than eight proces-

sors. An conservative lower bound estimate of the sequential Lime thalt _:i_llld be
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Table 4: Adaptive Mesh Solver-Timings (seconds)
Number of Total Total Scheduling Gather/Scatter
Processors Time Time Time

Time(ms) (seconds) seconds
1

8

16

32

5632*

794

417

248

4

6

10

65

40

27

required to solve this problem was obtained by generating S, the sum of the time

all processors spent in sweeps over the fine mesh. S includes no communication or

primitive calls and the code executed has the same number of operations as would a

sequential sweep over a fine mesh. The 8 processor timing took 3.2 times as long as

the 4 processor timing; the ratio between the 32 processor timing and S was 22.7.

We also measure the total time required by all Level 1 schedule procedure calls.

The scheduling took very little time; the overhead for scheduling ranged from 0.5 %

of the total time (on 8 processors ) to 4.0 % of the total time (on 32 processors). This

increase in the cost of the Scheduler with increasing numbers of processors can be

explained by the Scheduler's global communications phase discussed in Section 2.1.1.

Finally we measured the time required for carrying out gather/scatter procedure

calls. The time required for the gather/scatter procedure calls ranged from 8 % to
11% of the execution time.

In Table 5 we depict the results obtained from running the example problem on

32 processors with a range of second derivative tolerance (TOL) values; the amount of

refinement increases as T0L decreased. These problems were all continued for a total

of 440 coarse-grid time steps. In Table 5 we see that for problems in which there was

less refinement, the Level 1 scheduler required a larger proportion of the total time.

The ratio of computation to communication time did not change significantly with
the amount of refinement.

The refined mesh blocks were distributed among processors in a round robin

fashion. We consequently expect the ratio of computations to data elements com-

municated to remain roughly constant. As the number of refined blocks increases,

we expect t_n-a{ ea.ch processor wili-}iave to communicate with increasing numbers

of other processors. A more sophisticated strategy for assigning refined blocks to

processors would be likely to result in lower communication times both by reducing

the volume and increasing the locality of communications.

The Level 1 Scheduler required only 4 % of the total time when T0L was equal

to 21 but the Level 1 scheduler required 10 % of the total time when T0L was equal

to 27. As stated above, the scheduler has a global communications phase whose

cost does not depend on the amount of data to be communicated by each processor.

The Estimated Optimal Computation time depicted in Table 5 is S divided by the

number of processors. This gives a rough estimate of the time that would be required

to solve this problem were we to have attained linear speedup.
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Table 5: Adaptive Solver-Varying Tolerance(32 processors)
Tolerence Total Est. Optimal

Time Comp Time
(seconds)

21 248 176

23 186 130

25 130 91

27 92 57

Scheduling

Time

(seconds)

i0

9

7

6

Communication

Time

(seconds)
27

19

15

9

5 Conclusion

The ideas incorporated in PARTI are specifically aimed at computations on dis-

tributed memory machines in which the structure of the computation depends on

the input data. Run-time support must be incorporated as part of the distributed

implementation of such computations.

The PARTI primitives allow the user to describe how a data array is mapped

into the distributed memory of the machine. This is accomplished by specifying the

mapping of the data to a virtual processor array, then describing the relationship be-

tween the virtual processor array and the original processor array. These primitives

carry out scheduling operations that make it possible to emciently carry out gather

and scatter operations on distributed arrays using global indices. To illustrate the

performance tradeoffs encountered in carrying out these optimizations, we presented

benchmark results from an unstructured mesh kernel, and an adaptive partial dif-

ferential equation solver. Our results suggest that these primitives carry out needed

optimizations at a relatively low cost.
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